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Exact propagator for motion confined to a sector 

R E Crandall 
Department of Physics, Reed College, Portland, OR 97202, USA 

Received 5 August 1982 

Abstract. In certain situations the Feynman path integral ‘collapses’ into a countable sum 
over classical paths. This effect is sought in motion confined to a sector (in polar 
coordinates: r 3 0,O s cp s a). The exact space-time propagator is derived as a sum over 
a generally non-classical image set, with resulting structure radically dependent on number- 
theoretic properties of ~ / a .  It is shown that collapse occurs if and only if this number is 
an integer. 

1. Introduction 

Let R be a simply-connected region of n-dimensional space, with boundary aR, in 
which a non-relativistic particle moves freely except for perfect boundary reflection. 
The space-time propagator for the Schrodinger problem is taken to be that solution 
K (x, t l X O ,  0) to: 

X , X O E R  
aK h2 

ih --t-V:K = 0; 
at  2m 

with short-time behaviour: 

l i q  K = S n ( x  -xo); X, X ~ E  R (1.2) 
1-0 

and boundary conditions: 

K = O  if xEaR or xoEaR. (1.3) 
This propagator is expressible in terms of the normalised eigenstates 4 q ( x )  for a 
particle confined to R, as: 

K(x, tIXo, O)=C 4qb)4$bo) ex~(-i&t), (1.4) 
9 

where q denotes generally a quantum tuple, Eq is the associated energy for state q, 
and care must be taken to normalise bound states separately from continuum states 
in the event that R has infinite extent. 

In attempting to calculate the exact propagator for a given region, one is tempted 
to appeal to the Feynman path-integral formalism (Feynman 1948) in which the 
n-space-dimensional propagator for (smooth) potential function V ( x )  is formally 
written as a ‘sum-over-paths’: 

@ 1983 The Institute of Physics 513 



5 14 R E Crandall 

where P generally denotes a single path connecting the space-time endpoints (xO, 0) 
and (x, t ) ;  S(P) is the classical action for P, and A ( P )  is a normalisation factor depending 
only on temporal coordinates (Feynman and Hibbs 1965). One beautiful feature of 
this formalism is that classical correspondence, at least in an heuristic sense, is 
immediate. Indeed, we expect that the integral (1.5) will be dominated by paths ‘lying 
near to’ classical paths, since S(P) should not vary radically as P ranges over such a 
sub-collection. The resulting ‘reinforcement’ that occurs for the classical paths would 
become more pronounced as h is taken smaller, and this is the essence of the classical 
correspondence. There are potentials V(x) for which the Feynman integral ‘collapses’ 
into a single term, and the exact propagator is given for these V by: 

K (x, r /xo, 0) = B ( t )  exp(iS/h) (1.6) 

where here S = S(x, t lxO,  0) is the classical action. It can be shown that in any number 
n of dimensions, K has the form (1.6) if and only if the potential is quadratic, that 
is V(x) = a (x - Y ) ~  + b ;  with a, b, y constant. A vast literature concerned with the 
validity of the heuristic ‘stationary phase’ approximation has appeared (DeWitt 1972). 

By analogy with the Feynman formalism for smooth potentials, we define the 
propagator K to be ‘collapsed’ if it can be written as a countable sum of terms (1.6): 

(1.7) 

where PI ,  P2, . . . are classical paths connecting the space-time endpoints. Relation 
(1.6) is a special case of collapse, but we shall need the possibility of more than one 
classical path for the propagators involving bounded regions R, since these latter 
problems have effective potentials that are singular on the boundary aR. The rigid 
walls allow classical ‘bounce’ paths in addition to direct paths, with the possibility of 
infinitely-many bounces. 

K(x,  tIxo, 0) = C Bj(t) expEis(Pi)/hI, 
i 

2. Known collapsed propagators 

For free propagation within bounded regions R, all classical paths are straight lines 
except for reflections. For a path Pi of length Li the classical action is (m = k): 

S(P,) = L:/4t. (2.1) 

For one space dimension, K is always collapsed. Let R = (0, a), corresponding to 
one rigid wall at the origin. The exact propagator is ( h  = 1): 

(2.2) 

where Po is the direct path, with LO= Ix -xOI, and P1 is the single-bounce path with 
length L1  = x + x o .  For R = (-a, a )  for positive constant a, the quantum-mechanical 
setting is that of the familiar square-well. It can be shown (Wheeler 1976) that the 
propagator is: 

T = (4.rrit)-”2{exp[iS(Po)] - exp[iS(P1)]}, 

K = ( 4 ~ i t ) - ” ~  1 (-1)’ exp[iS(P,)], 
i 

(2.3) 

where Pi is any path that connects the space-time endpoints via exactly j bounces. 
There are no other really distinct one-dimensional cases. 
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In two space dimensions, the expression (2.3) generalises naturally for these known 

(i) R is any rectangle, 
(ii) R is a 45"-45" right triangle, 
(iii) R is a 30"-60" right triangle. 

cases: 

In each case, the exact propagator can be written, as can (2.3), in terms of theta 
functions, with equivalent representation (1.4) in terms of the bound states of R 
(Wheeler 1976). 

All of these known propagators for one and two space dimensions can be obtained 
by solving (1.1) and using the method of images. In fact, the solubility of the 
two-dimensional cases given is intimately connected with the fact that each of the 
figures can, upon duplication, tessellate the 2-plane. 

Generally, a failure of the method of images corresponds to a failure of K to be 
collapsed. K is' most certainly not collapsed for an arbitrary right triangle, for example, 
although no rigorous results are known. The development of the propagator for a 
particle in a sector, on which we presently focus our attention, shows that collapse in 
the sense of (1.7) is a rare occurrence, depending radically on the geometry of the 
region. 

3. Exact sector propagator 

A sector will be defined as the two-dimensional region R whose points have polar 
coordinates ( r ,  c p )  satisfying: 

0 G r,  OScpGa,  (3.1) 

so that the region has the appearance of a 'wedge' of interior angle a. The problem 
of wave diffraction in such a region has been analysed by several investigators 
(Sommerfeld 1896, Sastry and Chakrabarti 1979). In some limits, our eventual exact 
result is in agreement with established formulae (Jones 1964). 

A complete set of eigenstates for the sector of angle a can be obtained via the 
method of separation of the Schrodinger equation ( l . l ) ,  as (h  = 2m = 1): 

(3.2) 

where E is the (non-negative) energy, J ,  is the Bessel function of order v, and C,(E) 
is a normalisation number, to be determined. The index v takes on particular values: 

cl/",E ( r ,  cp = C, ( E )  sin W J ~  ( r J 3 ,  

(au/7T) E Z + ,  (3.3) 

which ensures that each eigenfunction vanishes on the boundary of the sector, that 
is along each ray cp = 0 and cp = a. Consider the space-time function K, defined by: 

&(r ,  cp, tlro, cpo, 0 )  = J dE exp(-iEt) 
oc 

a 0  

where the summation is over the values of v allowed by (3.3). On the basis of (3.2) 
it is evident that K, solves the Schrodinger equation (1.1) in r, cp, t. What we shall 
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presently show is that for two interior points r, ro of the sector 
lim K, = 62(r  -ro),  
t+0+ 

(3.5) 

so that in fact K, is the exact space-time propagator for the sector. It is &resting 
that this implies each eigenstate has equal energy-normalisation C,(E) = J l / a  

The demonstration of (3.5) is somewhat intricate. We start with the integral 
identity (Gradshteyn and Ryzhik 1965): 

a: 

G, = I, exp(-iEt)J,(rJE)J,(roJE) d~ 

where I, is the modified Bessel function of order v. Keeping in mind the correct 
values of U (3.3) in all summations, we have: 

(3.7) 

where we have used standard asymptotic expansion of I ,(z)  as z + -ia. The final 
sum can be evaluated with the Poisson identity: 

e x p ( i k z ) = 2 ~  ~ ( 2 i r j - 2 ) .  

Then the assignment w = cp f cpo establishes (3 .5) .  
k s Z  j € Z  

4. Sum over images 

In order to determine possible collapse of the exact propagator into a countable 
summation (1.7) we must attempt to cast the Bessel integral as a sum of free 
propagators, each summand corresponding to a classical path within the sector. 

Let q =a/ i r .  If q happens to be rational, say a/b, define a space-time function: 

&(r, cp, tiro, cpo, 0) 
I r m  

= A J d E  exp(-Et) 
2ira 

I m 

If q is irrational, we use instead: 

&(r, cp, flro, cpo, 0) 
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The importance of these functions will be apparent shortly. Using asymptotic methods 
of the last section, it is straightforward to show that for interior points ro, r of the sector: 

lim S, = S2(r  -ro).  
1-O+ 

(4.3) 

The functions S, are not, however, solutions to the propagator problem because they 
do not satisfy the sector boundary conditions (1.3). When q is rational the first 
summatibn in (4.1) can be split into two parts, one for integral v. The result is: 

(4.4) 
u E Z + / a  

where lf is the (single direct path) free propagator: 

k(r, cp, tiro, cpo, 0) = (4rit)- '  exp[i(r -ro1~/4t]. (4.5) 

The separation of the function S, into such parts is not possible when q is irrational. 
Next we define a set of image points in the plane (not necessarily lying in the 

sector itself) by: 

(4.6) 

This set, which depends on a fixed point r in the sector, is distributed over a circle 
of radius r, and is finite if q is rational, otherwise infinite. The importance of the 
functions Sa can now be revealed as follows. Trigonometric identities applied to the 
integrands of the definitions of the S, yield the exact propagator K, from (3.4) as a 
sum over the image set (4.6): 

I,jr) = { ( r ,  kcp + 2 ~ a ) :  F E 2; k = kl}. 

We are now in a position to address the issue of collapse. As might be anticipated, 
the results will depend strongly on the number-theoretic properties of q = a / r .  

5. The collapsing cases 

It is evident from the first term in (4.4) that collapse will occur only if a = 1, because 
collapse entails that the sum (4.7) consists only of free propagators expressible in 
terms of classical actions. For a = 1, that is sector angle (Y = r / b  for a positive integer 
6, the exact sector propagator is, from (4.7): 

There are exactly 2b classical paths, exactly half of which are paths with an odd 
number of bounces. It is easy to see on geometrical grounds that for any initial point 
ro in the sector interior, classical rays with b bounces have this amusing property: 
they strike the final point r with the same angle (with respect to the horizontal x axis, 
say) at which they leave the initial point. Studies in the references (McGuire 1964) 
make the connection between this classical property and the absence of diffractive 
effects in wave equations for the sector. The equal-angle property of the rays is not 
true when the' sector angle is not of the form r / b .  Indeed, the space-time function 
S, in (4.4) is, in the obvious sense, made up of a proportion (1 - l / a )  diffractive waves 
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and a proportion ( l / a )  of what we might call non-diffractive component (the ‘free’ 
part of this function). 

It is no surprise, therefore, that each of the solved collapsing cases for polygons 
given in § 2 involves interior angles of the form r / b .  The plane-tessellating property 
of such polygons goes into the property, for the sector, that the latter must tessellate 
the half-plane. 

6. Edge diffraction 

Consider the case a = 27r. This is the problem of a diffracting ‘knife-edge’ running 
along the +X axis. As a by-product of the sector analysis, we can write out the exact 
solution to the diffraction problem. 

From (4.4) we see that the exact a = 27r propagator will be 1 collapsed and t 
diffractive, since a = 2, b = 1. The integral in (4.4) can be evaluated to give: 

s ~ , ,  = k[t + (2i)-’”~{(rrO/t) cos[(cp - (po)/2111, (6.1) 

where F is the Fresnel integral (Abramowitz and Stegun 1970): 

F ( z )  =: C ( z )  +iS(z)  = exp(i7ry2/2) dy. 16 
The exact propagator KZm is then obtained from (4.7) where there are two image 
points. These correspond to the direct path from ro to r, which is sometimes classically 
possible; and a second path from ro to the reflection of r through the knife-edge, 
which is also sometimes possible. That at least one of these paths is always classically 
possible is suggested by the factor of 3 in (6.1). 

Generally we expect the collapse to fail in Schrodinger problems for which the 
classical rays sometimes disappear as the initial and final points are moved within the 
region R. One reason for the failure is that paths not continuously defined cannot 
be the sole contributors to a sum such as (1.7), since the latter must itself be continuous. 
Still, it appears that such situations can still be salvaged by appeal to a non-classical 
‘image set’ as was done in the derivation of (4.7). 

7. Conclusion 

We have seen that the space-time propagator for motion in a sector of angle a can 
be found exactly as a sum over a generally non-classical image set. This propagator 
collapses into a sum of free terms over 26 possible classical paths if and only if the 
angle is a = r / b .  In general, if the angle has the form m / b  then the exact propagator 
is in a certain sense made up of a ( l / a )  collapsed part and a (1 - l / a )  diffractive part. 
This is in keeping with known results concerning closed two-dimensional polygonal 
regions: in each solved case every interior angle is of the form r / b .  

It would be interesting to find a general sum-over-images formalism for application 
to all problems of free motion in bounded regions R. It is very likely that diffractive 
effects would dominate the propagators in the vast majority of cases. Finally, it would 
be very useful to extend the Feynman path integral formalism in such a way that these 
results could be obtained via stationary-phase methods, without recourse to the 
structure of the eigenstates for the region. 
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